If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-968=0
a = 1; b = 12; c = -968;
Δ = b2-4ac
Δ = 122-4·1·(-968)
Δ = 4016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4016}=\sqrt{16*251}=\sqrt{16}*\sqrt{251}=4\sqrt{251}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{251}}{2*1}=\frac{-12-4\sqrt{251}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{251}}{2*1}=\frac{-12+4\sqrt{251}}{2} $
| t—-213=881 | | -3(5k+6)=123 | | 18+4x=47 | | -1-7x+42+6x=37 | | ∠A=6x−2}∠B=4x+48∘ | | 28=u-3 | | f+2=13 | | 1+5(2a+3)=106 | | 60=(32÷4)h | | 18+4x=15+x | | 3x-5=(25/3)x-2.3333333 | | -7(x-5)+3x-2(x+8)=8+4x-7x+4(2x-8) | | 58/11=20/x | | 3x-5=(25/3)-2.3333333 | | 1/4p=8/1 | | m+2-3=7 | | 0=60-(1.6d) | | 1-3x-10x=27 | | 2n2+n=1275 | | ?x3=93 | | 8(2x+3x+2)=-2(2x-74) | | 8=5-10a+9a | | 5n=-36+7n | | n+2n+3n=45 | | 5/8×+4=3/8x+12 | | 17-4(3x-5)=-3 | | 5(3x+9)=-41+56 | | 14 | | 14 | | 2x-6-128/x3=0 | | (7w+5)/8=5 | | 6=1/10b |